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Utilizing some ideas originating from R. Peurose's twistor theory we develop a 
(quasi) classical, relativistic but not field-theoretical formalism for the descrip- 
tion of particle interactions. A simple example based on our ideas is explicitly 
solved. The physical interpretation of some very well-known relativistic notions 
is also given. 

1. INTRODUCTION 

Nonrelativistic quantum physics has its formal roots in the sym- 
plectic (Hamiltonian) structure of the phase space F = {(p~, p2 . . . . .  PN; 
q,, q2 . . . . .  qu)}. Pk and qk denote a component of the generalized 
"linear momentum"  and a coordinate of the generalized ',position 
vector,"  respectively. The two variables (Pk, qk), describing dynamics 
of the k th  participating particle, constitute a pair of so-called canonically 
conjugate observables. Specifying a Hamiltonian H = H ( q  I . . . . .  qN; 
P t , . . . , P N )  for, e.g., a closed system of particles we get equations of 
motion: 

dP'k = {H, Pk) dqk = {H,  qk} 
dt ' dt 

where t is the time parameter and brackets denote Poisson brackets. Some 
years ago it was shown by Penrose (1968) that a similar Hamiltonian 
structure may be associated with the "space" of relativistic particles in 
interaction. This symplectic (canonical) structure is, however, apparently 
hidden from the direct insight (the reason for this seems to be of great 
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significance) 1 and appears on the level of massless "square root" (i.e., 
twistor) description of particles. The canonically conjugate variables are 
twistors and twistor complex conjugates themselves. Replacing Poisson 
brackets by commutators the Poincar6 algebra arises as a quadratic closed 
subalgebra lying in the (conformally broken) enveloping algebra of twistor 
operators. 

These facts justify the approach presented in this note which is 
organized as follows. In the next section we introduce some relativistic 
concepts and definitions. In the third and fourth sections we interpret their 
physical content. In the fifth section we convert our quantities into 
relativistic quantum operators (Poincar6 algebra). Some peculiar relativis- 
tic commutation relations between physical observables are derived. In the 
sixth section, using commutation relations of the Poincar6 algebra, we 
generate interaction between operators corresponding to two different 
relativistic (sub)particles coupled together to form a closed spinning sys- 
tem. Specifying the Hamiltonian operator, performing all commutations 
and going to the relativistic classical limit we obtain a set of equations 
describing the motion of our (now classical) (sub)particles. A simple 
example is solved and some suggestions for the interpretation of solutions 
are made. Finally, we make a few comments on the present status of 
Penrose's twistor theory and also on possible further development of the 
ideas presented in this note. We wish also to emphasize that our exposition 
is in a certain sense self-contained and does not require any knowledge of 
twistor theory. 

2. CONCEPTS AND DEFINITIONS 

Let us imagine an inertial space origin O endowed with an intrinsic 
time parameter "r. Denote events at O by (O, z). Next, assume that relative 
to O a remote relativistic massive system (particle) S is ultimately char- 
acterized by ten numbers evaluated with respect to the time coordinate ~- 
and an arbitrary orthonormal space coordinate system also at O. The 
quantities represented by these numbers are: E(~')--_energ_y of S, f i (~ ')-  
linear momentum of S and additionally two vectors J(~-), K(~-) associated 
with S, the precise physical meaning of which will be discussed shortly. In 

tTwistor theory "predicts" the existence of correct internal particle symmetries and shows 
that they are a consequence of the conformal symmetry breaking, reducing conformal 
symmetry to (massive) Poinear6 symmetry. 
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order to simplify computations we introduce four-dimensional tensor nota- 
tion and put 2 

M ~~ =Mo~ = -M~, o = - M  ~ =K,~, J ~ = ( K  1, K 2 ,/('3) 

M ~ =M,#~ =e,~#rJr, J =  (J1, J2, J3) 

_p,~=p~, =pc,, pO =P0 = E / c ,  f i= (P l ,PE ,P3)  

ea~. t =etal~r] , e321 = 1 Pi P  i =m2c  2 

The ten numbers are now given by M ik= - M  ~; and p i ,  Latin indices 
running over 0, 1,2, 3 and Greek indices referring to space coordinates. 

With respect to boosts and rotations of the orthonormal space coordi- 
nate system at (0 ,  "r), M ~k and Pi transform as a second-rank 4-tensor and 
a 4-vector, respectively. 

3. T H E  FREE-PARTICLE CASE 

If the system S is closed (free particle) the quantities mentioned above 
become time independent. 

Let us define a set of physically equivalent translated origins (O' )  (all 
parameterized by r and independently a set of physically equivalent 
"translated" intrinsic time scales ( r  A~ A~ 1} at (O') .  If we per- 
form one such a general translation then the ten time-independent num- 
bers M ik, pi  mix with each other and transform according to the very 
well-known rule 

M,ik  = M i k  _ 2 A [ i p k l ,  p,i  = p i  (3.1) 

where (A 1, A 2, A3) =~f=  OO '. 
M,ik, p,i, being still time independent, once again characterize S but 

now with respect to the new (translated) space coordinate system at the 
point O' endowed with the new ("translated") intrinsic time parameter 
,r' =,r + A ~  

If at 0 we wish to assign space-time coordinates to the closed system 
S we may proceed as in the work of Penrose and MacCaUum (1973). The 
relativistic centre of the total energy of S is thus defined as the locus of all 

2Summation convention is assumed throughout this paper. Square brackets around sub- and 
superscripts denote antisymmetzJzation. 
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translated events (tg, X ~  such that ~.~ik= O, i.e., 

ff i-~l ik = Pi M ' ~ -  P,.X'P k + m2c2X k = 0 (3.2) 

were . ~ = O O = ( X  1, X 2, X3). Solving for X i, with ~ being an arbitrary 
parameter, we get 

X ~ = ( 1/m2c 2)MikP k + ~k pi  (3.3) 

Splitting (3.3) into space and time coordinates we obtain 

ct ---- g .fi/m2c 2 + A E /  c 

~= EK/m2c  3 + J•  2 - ) t f f  (3.4) 

or equivalently with y = 1/(1 - v2/c2) 1/2 and 6=  c2~/E: 

"tct = - ' yg .  ~/  c + cam 

( 1 / v ) i =  K / m c  + J •  g /mc  2 - X m6 (3.4') 

If v/c<< 1 we may neglect all terms of order v2/c  2 or higher and arrive at 

ct "~ - - g . f / c + c X m  

? = K /  mc - Xrng (3.5) 

The formula above justifies the following identification: 

~m=~- (3.6) 

Written out again the equations in (3.4) read 

ct  = - K . p / m 2 c  2 + c ~ . E / m d  = - e .  e / c  + c ' r ( 1 / ~ , )  

~---- EK/m2c 3 + J •  2 - "r:lm = "[Klmc + TJ• ~ /rnc 2 -  ~"t6 

(3.4") 

As is seen from (3.5) the vector K / m c  forms an (approximate) separation 
vector between S and O at the time z = 0. Alternatively we could say that 
K/mc  constitutes a separation vector between S and an observer in rest 
relative S at (O, ~'). 
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In order to generalize the above notion of separation vector to the 
relativistic case we perform a boost c2ff/E at (0 ,  ~-) and from (3.4") obtain 

I'=~- 

F=K' /mc (3.7) 

K'/mc defines the searched-for separation vector, where K '  is given by 

K'=yK+(JXf i ) /mc-[1/( l+y)m2c2]f f ( f i .a~)  (3.8) 

Simultaneously we obtain a relativistic expression for the internal spin 
vector of S at O: 

f '=yJ- (K .  Xf i ) /mc-[1/( l+y)m2c2]f i ( f i .J )  (3.9) 

Derivation of (3.8) and (3.9) is given in the Appendix. 
In order to analyze the physical meaning of the vector J more fully let 

us introduce the Pauli-Lubafiski spin 4-vector Si: 

m S t .  ~ 1 �9 ~ [ j k p  l 
- -  2 ~ i j k l  . . . . .  e i j k l  = e t i j k l ] "  E0123 = - 1 (3.10) 

Splitting again into space and time components we get 

So=(f i ' J ) /mc 

if= EJ/mc 2 - (I~Xfi)/mc = y ] -  ( KXfi)/mc (3.11) 

If we introduce a vector 

- -  d e f  

L = (1 /y) (KXf i ) /mc=c(KXf i ) /E  (3.12) 

then it is easy to realize that 

L =Jr 0 (3.13) 

Recalling nonrelativistic physics we define the total relativistic orbital 
angular momentum vector of the (closed) system S relative to an observer 
at O as 

- -  d e f  - -  

Lot b -- K 'Xf i /mc=y(KXf i ) /mc+(1-y2)J+f i ( f i . f  )/m2c2 (3.14) 
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The total relativistic angular momentum vector of S relative to an observer 
at 0 we define as 

_ d e f  , 
"/tot = J +Lorb=( 1 +Y--Y2)aF+(Y - 1)(.KX~)/mc 

+ (~-- 1 ) f i ( f i . J ) / ym2c  2 (3.15) 

If Si=O, i.e., J '=0 ,  i.e., L=J ,  then we have 

f o r = J - -  Lorb =/~ (3.16) 

Even if S; ~ 0 while v/c<< 1 we still get approximately 

�9 / ~ o t ~ Z  Eo~b~/'- ,  ( 3 . 1 7 )  

but in general Jtot =/=f and ~'orb =f=/~ i_n case S i=/= O. 
Alternatively we might take L in (3.12) as a definition of the total 

relativistic orbital angular momentum and identify j with the total relativ- 
istic angular momentum of S relative an observer at O. Then, instead, we 
would in general have that J=~=L+J', the equality being only approxi- 
mately valid in the limit v/c<<l. Which alternative is more appropriate 
depends on the experimental situation. It remains to be investigated, from 
the above point of view, what is actually measured while performing 
experiments. We note that both alternative relativistic generalizations 
above in the limit c ~  approach the same conventional nonrelativistic 
physical concepts. Summarizing our discussion so far we observe that the 
free-particle (closed system) S is at any point O in space described by the 
following time-independent quantities: 

Defined directly---if, linear momentum of S relative an observer at O. 
Defined directly--E, energy of S relative an observer at 0. 
Equation (3 .8)--K' /mc,  separation vector between S and O. 
Equation (3.9)--J', internal angular momentum vector of S at O. 
Alternative 1: 
Equation (3.14)--Lorb, orbital angular momentum vector of S relative 
an observer at O. 
Equation (3.15)--.~ot, angular momentum vector of S relative an 
observer at O. 
Alternative 2: 
Equation (3.12)--/~,, orbital angular momentum vector of S relative an 
observer at O. 
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Defined directly--J,  angular momentum vector of S relative an ob- 
server at O. 
The relativistic quantities introduced thus possess a very straightfor- 
ward physical interpretation. The axial vector J and the polar vector g 
carry indirect information about the system S and we hope to have 
clarified their precise connection to the generally accepted physical 
notions. 

4. THE TIME-DEPENDENT CASE 

In the time-dependent case when the system S is not closed we are not 
able to construct_any meaningful "position" space-time vector out o f~ ( r ) ,  
E(~'), J ( r ) ,  and K(~') at O. Instead we arrive at the formula 

ct= - g ( r -  t ) ~ ( , -  t)/m2c 2 + ( r -  t)E('r- t)/mc 

F= E ( r -  t ) K ( r -  t)/m2c 3 + j ( r -  t) X f i ( r -  t)m2c 2 - ( r -  t)fi('r- t ) /m 

(4.1) 

which seems to be useless. The coordinates in (4.1) depend very heavily on 
how the quantities_ K, J, fi, E Vary with time at O. We can, however, easily 
see that K'/mc, J', L, Lorb, "~ot and of course J, fi, E, albeit now time 
dependent, retain their previous physical meaning. Perhaps the concept of 
the, now momentary, separation vector between O and S requires an 
additional comment. Suppose, thus, that we at O perform an instantaneous 
boost c2fi/E(r-t),  then the equations in (4.1) become 

t' = , ' - t '  = , ' /2=r"  

?'=K,'('r")/mc (4.2) 

m 

where r ' - t ' = r - t  and K ' ( r " )  is again expressed by the formula (3.8). 
- "  " " 

Lorb('r ) and Jtot('r ) are then also given by (3.9), (3.12), 
(3.14), and (3.15), respectively. 

It is a remarkable fact that the first time derivative of K'/mcy can not 
generally be identified with the physical velocity c2~/E of S relative an 
observer at O but constitutes a new concept. It defines an apparent 
instantaneous "velocity" vector of S relative an observer at O. The mod- 
ulus of this "velocity" vector may be greater than the speed of light c. This 
apparent "velocity" vector is, thus, in a certain sense related to the 
properties of space itself, which in turn is related to the very existence of 
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the system S and its observer at O. In this context compare Einstein's 
notion of separability discussed by d'Espagnat 1979. 

5. RELATIVISTIC QUANTUM PHYSICS a 

Introducing relativistic quantum physics the ten numbers describing 
the system S at O become operators obeying the well-known rules for the 
Poincar6 algebra: 

[ ~',,~] =0, [ ~ . ,  ~s~] =2ig~t4.,J 

[ ilJ i j, 21)1 'k ] = 2i( glIJ3~Ii] k + gk[ij~lJ]') 

goo=gOO= _ga, = _ g a , =  1, gik=o if ivak (5.1) 

Commutation relations between all the physical quantities introduced 
earlier may now be deduced from (5.1). For example, in the free-particle 
case we put for operators of space-time coordinates: 

2i= ( l lm2 )l~ik ff k q_ ~ ffi (5.2) 

Using the operator identity [.d/~, d] = 3[B, d l + [3, d l~q we get 

[ .~i, ~j]  = _ igij+ il~i~J/m 2 (5.3) 

or in more explicit terms with proper units: 

[ t , g ] - - - i h + i h E 2 / m 2 c  4, [ c t , ~ a ] = [ ~ a , E / c ] = - i h g p a / m 2 c 3  

(5.4) 

[ 2~, ~ ]  = ih 8,#~ + ih~l~#//m2c 2 (5.5) 

A 

If the system is not closed we have to use K ' / m c  as a "position" operator. 
Once again using the operator identity above we get 

[ K ' / m c , f i a ] = i h  i~,~#+-~c2p, p# 1 -  ~ 1+ mc2] j (5.6) 

3 F r o m  n o w  o n  w e  p u t  h = c = I i f  n o t  e x p l i c i t l y  s t a t e d  o t h e r w i s e .  
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A t 
It is now obvious that neither the pair ( ~ ,  fiB) nor (K J m c ,  ~/j) can serve 
as a pair of canonically conjugate operators. In the limit v/c<< 1, on the 
other hand, both pairs may be so used interchangeably. Looking for a 
covariant, physically meaningful (i.e., from the very start allowing for 
intrinsic spin) pair of canonically conjugate "particle" operators compati- 
ble with the whole of Poincar6 algebra, we are inevitably led into Penrose's 
twistor theory (Penrose, 1975; Hughston, 1979; Hughston and Ward, 
1979). In this paper we shall not, at least not explicitly, be concerned with 
this beautiful and self-contained theory. For an introductory review see, 
e.g., Bette (1979). 

6. PARTICLE INTERACTIONS INDUCED BY POINCARI~ 
ALGEBRA 

Operators of the squared mass and squared spin commute with all 
operators in the Poincar6 algebra associated with the closed system S. 
They are given by 

l ~ 2 =  f i i  f i i / m 2  

~ ~l p r l l A m n p l l ( f f j k / n a 2  ~2 = ~ i ~ i  1 . . . . .  
~ i j k l ~ m n r  . . . . . . . .  i , , ~  (6.1) 

where m 2 is the eigenvalue of/~i/~/. 
The operators in (6.1) are usually called Casimir operators of S. 

Having in mind the underlying symplectic twistor structure of S we assume 
that its Hamiltonian operator is always a function of the Casirnir operators 
above: 

/-I = / l ( th  2, 8 2) (6.2) 

If we now imagine that our free particle S is in fact a composed system 
consisting of two interacting parts (subparticles) then we may formally 
write 

. . . . . .  M 

where �9 is an intrinsic time parameter at O. 

(6.3) 
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Operators associated with different parts of the system S are supposed 
to commute with each other. Imitating nonrelativistic dynamics we obtain 
the following relativistic quantum mechanical equations of motion for 
operators describing the two interacting subparticles: 

^ i  ^ i k  

dMia) - i [  I~, ~li~ak ) ] dPo') = -i[/-}, ~/a)], 1"0 d1" = r~ dr ( a )=(1 ) ,  (2) 

(6.4) 

where square brackets denote commutators corresponding to the classical 
twistor Poisson (curly) brackets (Penrose, 1968; Bette, 1979) and where z O 
is a constant with the dimension of time. Let us choose a very simple form 
for the "Hamiltonian" in (6.2): 

/_~=/~/2 ~2 (6.5) 

Performing the commutation on the right-hand side of (6.4), neglecting 
terms of order h 2, and letting operators become usual ( c - )  numbers we 
get the following set of (quasi) classical dynamical equations: 

d p ( a l ) _ _  i l a [ k  j ]  ro--~z - 2 S  eijklP g(1) P /m  

dM~ _ 4 o,-,J [ a e b ]  + 2sieijklMJkg[l)[aeb] /m 
'r~ dr  m2 "if(l) 

+ 2SieijklPl(g(al~kMJ]b + g~l{JMkla)/m 

a _ p  - e ( l ) ,  g ( t~  - ~  . . . . .  (1) P(2) - a a - -  Itafab - -  M a b  (6.6) 

Choosing a space coordinate system with its origin in the center of energy 
of the total system in such a way that 

M21=MI3=Ma~ M32=s, i.e., S0=0 and 

S=  (s,0,0), Po =m,  /7=0 (6.7) 
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the equations in (6.6) become 

de(?) de(', de?,) 
aT = 0,  a---g- = ~  ~o d--V = - 2~e(] ) ,  

de(]) 
f"o-~-  z =2sP(2) 

(6.8) 

"r~ d~" P(])' dM?'~ = 2 ( -  l - s 2 )  p(2) + 2sM?'~ (6.9) 
= -  ~'~ d- - -~  m 

dM?'~ =2 (" 1-~2) 
"r~ ~ m P(])- 2sM?'~ 

dM~=O (6.10) 
dr  

Putting 

Wo=2S/~" o, -P~)=p~=/~yv~, I - -  1~ m txfl 
�9 / o  - -  2 ~ a f l a  ( 1 )  

_ a 0  K,-M~,) ,  P ( ~  (6.11) 

where/ t  is the rest mass of particle No. (1) we easily get the solutions of 
(6.8)-(6.10): 

P 2  = A c o s  (Oo~" - -  B sin Wo~- 

P3 = A sin WoT + B cos tOoT 

-C)cOS o  
K 3 .-- C s i n w o , r + D c o  s tOo.r 

P ! = const 

2 
K{ -- ~ToPl~'+ F 

E = const 

J = c o n s t  (6.12) 
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From the above solutions we can form all (relativistic) physical quantities 
introduced earlier in Section 3. Their exact temporal evolution depends on 
the numerical relations between the integration constants A, B, C, D, F,/L, 
Iffl, and Z 

If, on the other hand, s>>l, v/c<<l, and %=2(l+s2)/m we get 
approximately 

g2/~"~U2, J~3/~'~u3, /~1"~0 (6.13) 

where the dot denotes the time derivative. 
From this we realize that in the nonrelativistic, large angular momen- 

tum limit, the two velocity concepts mentioned at the end of Section 3 
coincide. 

In the approximation above [equations (6.8) and (6.13)] we also note 
that, while one of the (sub)particles performs a spiral motion inwards, the 
other is spiralling outwards in the opposite direction. We suggest the term 
"twist interaction" for the kind of interaction described here and argue 
that for small values of angular momentum (and also for high values of the 
total energy), i.e., in connection with elementary particles, the approach 
above is more appropriate than the conventional one. 

Assuming different relative numerical ratios between integration con- 
stants in the solutions one might easily explore their exact physical mean- 
ing. This we intend to do in a forthcoming paper. 

Conclusions and remarks: The proper treatment of the interaction 
presented here requires the use of the quantum theory of twistors. Penrose 
and co-workers are intensely involved in the construction of an ap- 
propriate mathematical apparatus by which such a treatment can be made 
possible. Many questions are, however, still unsolved. 

While awaiting the new mathematical apparatus of Penrose's school to 
become sufficiently developed, we may in some cases tentatively proceed 
as suggested in this paper. For example, we could treat a spinning (note 
that the nonvanishing of the total spin of the system is crucial for the 
interaction to exist) free particle as one composed of two interacting 
twistors where interaction is generated by the procedure analogous to that 
presented here. The behavior of elementary particles could then perhaps be 
explained, at least qualitatively, by means of the (quasiclassical) solutions 
obtained in this manner. 

ACKNOWLEDGMENTS 

I would like to thank H. Hcllstcn for many stimulating discussion's. 



Relativistic Particle Mechanics 771 

AP P ENDIX 

A 4-vector A i consists of 3-vector A = ( A I ,  A2, A3) and an associated 
scalar A 0. Under  boost  transformations the scalar A 0 and the 3-vec tor /T  
mix with each other according to the rule (Rindler, 1960) 

A ' = A  + ~ (  ~ .A  _ T__A - U - ( v -  1) c oj t 

From (A. 1) we easily deduce the transformation law for an antisymmetric 
tensor Mik_of second rank. Mik consists of an axial 3-vector 07 and a polar 
3-vector K. Forming Mik by taking two different arbitrary 4-vectors 
Mik=2Ai iBkl  and using (A.1) we get for the polar vector part  K =  
(g01, M02, g03) 

M'o~,=V{ Mo~,+(1/c)v#M~, . -[  v / ( l  +'g)c2]v~,voMot~) (A.2) 

or equivalently 

g , ' = T { K , + ( 0 7 X ~ ) / c - [ T I ( I + T ) c Z ] ~ ( 6 . K ,  )} (A.3) 

Similarly for the axial vector par t  07=(M32, M13, MZl ) we obtain 

(A.4) 

Note also that (A.3) and (A.4) automatically provide us with the exact 
relativistic transformation formulas (in the 3-vector form) for the electric/~ 
and the magnetic H 3-vectors, respectively. 
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